Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: modulation by protein kinases.
نویسندگان
چکیده
In this review, the pathological alteration and clinical relevance of voltage-gated K(+) (Kv) channels and their specific regulation by protein kinase-dependent signaling in vascular smooth muscle cells are described, particularly focusing on the pulmonary vasculature. The physiological relevance, channel characteristics, pharmacological modulation, and expression of Kv channels vary between different arterial beds and between subdivisions of arteries within those vascular beds. Although detailed signaling cascades regulating Kv channels are not clearly elucidated, it is known that the Kv channels in vascular smooth muscle cells can be tightly regulated by protein kinases C (PKC) and A (PKA). Alterations in Kv channel expression and function has been noted in pathological and pathophysiological conditions including hypertension (pulmonary and systemic), in diabetes and in individuals subjected to prolonged hypoxia (high altitude living). Vascular Kv channels are potential therapeutic targets in diseases such as pulmonary arterial hypertension and, therefore, it is important to understand the specific pharmacological modulation of Kv channel isoforms in different vascular beds.
منابع مشابه
Steady-State Modulation of Voltage-Gated K+ Channels in Rat Arterial Smooth Muscle by Cyclic AMP-Dependent Protein Kinase and Protein Phosphatase 2B
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel ac...
متن کاملIon channels and vascular tone.
Ion channels in the plasma membrane of vascular muscle cells that form the walls of resistance arteries and arterioles play a central role in the regulation of vascular tone. Current evidence indicates that vascular smooth muscle cells express at least 4 different types of K(+) channels, 1 to 2 types of voltage-gated Ca(2+) channels, >/=2 types of Cl(-) channels, store-operated Ca(+) (SOC) chan...
متن کاملVoltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملIn-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets
Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV ch...
متن کاملLeptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores
Decreased leptin-induced endothelium-dependent vasodilation has been reported in spontaneously hypertensive rats (SHR). Here, we report leptin-induced vasoconstriction in endothelium-denuded pulmonary artery and thoracic aorta from SHR and sought to characterize calcium handling underlying these mechanisms. Vasoreactivity to leptin was evaluated on pulmonary artery and thoracic aorta rings from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in biophysics and molecular biology
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2010